financeadvanced580 tokens

Revenue Forecasting Model

Build SaaS revenue forecasts with cohort analysis

revenue-forecastingsaas-metricsfinanceforecastingarrmrr

Prompt Template

Build a data-driven revenue forecast:

**Company:** {company_name}
**Forecast Period:** {quarters} quarters
**Current MRR:** ${current_mrr}

**Historical Data:**
| Quarter | New MRR | Churn | Expansion | Net New MRR |
|---------|---------|-------|-----------|-------------|
| Q-4 | ${q4_new} | ${q4_churn} | ${q4_exp} | ${q4_net} |
| Q-3 | ${q3_new} | ${q3_churn} | ${q3_exp} | ${q3_net} |
| Q-2 | ${q2_new} | ${q2_churn} | ${q2_exp} | ${q2_net} |
| Q-1 | ${q1_new} | ${q1_churn} | ${q1_exp} | ${q1_net} |

**Cohort Analysis:**
- Month 1 retention: {m1_retention}%
- Month 6 retention: {m6_retention}%
- Month 12 retention: {m12_retention}%
- NRR: {nrr}%

**Forecast Assumptions:**
- New customer growth: {customer_growth}%/quarter
- Average ACV: ${avg_acv}
- Gross churn: {gross_churn}%/month
- Expansion rate: {expansion_rate}%/year

**Revenue Forecast:**
| Quarter | Beginning MRR | New MRR | Churn | Expansion | Ending MRR | Growth % |
|---------|---------------|---------|-------|-----------|------------|----------|
| Q1 | ${q1_begin} | ${q1_new_f} | ${q1_churn_f} | ${q1_exp_f} | ${q1_end} | {q1_growth}% |
| Q2 | ${q2_begin} | ${q2_new_f} | ${q2_churn_f} | ${q2_exp_f} | ${q2_end} | {q2_growth}% |
| Q3 | ${q3_begin} | ${q3_new_f} | ${q3_churn_f} | ${q3_exp_f} | ${q3_end} | {q3_growth}% |
| Q4 | ${q4_begin} | ${q4_new_f} | ${q4_churn_f} | ${q4_exp_f} | ${q4_end} | {q4_growth}% |

**Scenarios:**
- **Base:** ${base_arr}
- **Upside:** ${upside_arr} (if {upside_condition})
- **Downside:** ${downside_arr} (if {downside_condition})

**Key Drivers:**
1. **New Logos:** {new_logos}/quarter × ${avg_acv}
2. **Expansion:** {expansion_pct}% of existing base
3. **Churn:** {churn_pct}% monthly

**Sensitivity:**
Show how forecast changes with ±10% in each driver.

**Recommendation:**
Based on trends, forecast ${forecast_arr} ARR by end of period.
Confidence level: {confidence}%

Provide: Detailed forecast + scenarios + sensitivity analysis.

Variables to Replace

{company_name}
{quarters}
{current_mrr}
{q4_new}
{q4_churn}
{q4_exp}
{q4_net}
{q3_new}
{q3_churn}
{q3_exp}
{q3_net}
{q2_new}
{q2_churn}
{q2_exp}
{q2_net}
{q1_new}
{q1_churn}
{q1_exp}
{q1_net}
{m1_retention}
{m6_retention}
{m12_retention}
{nrr}
{customer_growth}
{avg_acv}
{gross_churn}
{expansion_rate}
{q1_begin}
{q1_new_f}
{q1_churn_f}
{q1_exp_f}
{q1_end}
{q1_growth}
{q2_begin}
{q2_new_f}
{q2_churn_f}
{q2_exp_f}
{q2_end}
{q2_growth}
{q3_begin}
{q3_new_f}
{q3_churn_f}
{q3_exp_f}
{q3_end}
{q3_growth}
{q4_begin}
{q4_new_f}
{q4_churn_f}
{q4_exp_f}
{q4_end}
{q4_growth}
{base_arr}
{upside_arr}
{upside_condition}
{downside_arr}
{downside_condition}
{new_logos}
{expansion_pct}
{churn_pct}
{forecast_arr}
{confidence}

Pro Tips

Use cohort-based approach. Model churn realistically. Include expansion revenue. Test scenarios. Update monthly.

Need More Prompts?

Explore our full library of 60+ professional AI prompt templates

Browse All Prompts →